Aplikacja do podpisywania plikow, weryfikac;ji
podpisow, a takze generowania kluczy.
Wykorzystujgca algorytmy: Kyber, Dilithium,
Falcon, Cross, SPHINCS++.

styczen 2026

Sktad grupy

T
5

¥

\-,
1y

Krzysztof Madajczak ia Sadecka Jakub Miocek

Harmonogram

1. Integracja wszystkich algorytmow z aplikacjg - do 28.11

2. Dodanie funkcji zapisu klucza prywatnego na urzgdzeniu YubiKey - do 5.12

3. Przeprowadzenie testéw funkcjonalnych i uzytkowych - do 8.01

4. Opracowanie petnej dokumentacji technicznej oraz przygotowanie koncowej prezentaciji
projektu - do 26.01

Podziat prac

e Krzysztof Madajczak - Implementacja Gui, gtéwnej struktury programu, wykrywanie oraz
obstuga dysku zewnetrznego (pendrive)

e Julia Sadecka - Implementacja algorytmu szyfrujgcego Kyber, przygotowanie raportu
diagraméw UML, oraz prezentacji.

e Jakub Mtocek - Implementacja algorytmu Falcon i Cross i przygotowanie benchmarkow
algorytmow szyfrujgcych i podpisu cyfrowego.

e Marcel Trzaskawka - Implementacja algorytmoéw podpisu cyfrowego; Obstuga headeréw
plikéw z celu automatycznego wykrycia algorytmow; Opis instalacji

Sktad grupy
Harmonogram
Podziat prac

Cel projektu
Funkcjonalnos¢ aplikaciji

Generowanie Kluczy

Wagranie kluczy z pamieci USB
Podpis i weryfikacja dokumentu
Szyfrowanie i odszyfrowanie
Benchmark

Instalacja

Sposobb 1 - Instalacja poprzez libogs-python
Sposodb 2 - Reczna instalacja libogs
Sposobb 3 - Nieoficjalne repozytoria
Instalacja libogs-python

Linux i Mac

Windows
Uzywanie biblioteki

Linux i Mac

Windows

Wybrane algorytmy

Kyber
Dilithium
Falcon
Cross
SPHINCS++

o W -

11
14
16
17
17
17
18
18
18
18
19
19
19
20
20
20
20
21
21

Cel projektu

Celem projektu byto stworzenie aplikacji umozliwiajgcej wygodne i bezpieczne korzystanie z
algorytmow postkwantowych w codziennych operacjach kryptograficznych. Aplikacja pozwala
na generowanie kluczy, podpisywanie i weryfikacje dokumentéw oraz szyfrowanie i
deszyfrowanie plikow, zapewniajgc jednoczesnie intuicyjny interfejs uzytkownika w ktérym
mozliwe jest takze automatyczne wykrycie kluczy na nosnikach przenosnych. Dodatkowo,
wbudowany modut benchmarku umozliwia ocene wydajnosci poszczegdélnych algorytméw, co
pozwala poréwnac ich efektywnos¢ w praktyce.

Szczegoty techniczne dotyczace instalacji wymaganych bibliotek zostaty opisane w rozdziale
sInstalacja”, a uzyte algorytmy postkwantowe w rozdziale ,Wybrane algorytmy"”. Logika dziatania
oraz petna funkcjonalnos¢ aplikacji zostata przedstawiona w rozdziale ,Funkcjonalnosc¢

aplikacji”.

Funkcjonalnosc¢ aplikaciji
Nasza aplikacja ma kilka gtéwnych funkcjonalnosci:

e generowanie kluczy przy uzyciu algorytméw postkwantowych,
e odczyt kluczy z pamieci przenosnej (pendrive),

e podpis i weryfikacja plikow,

e szyfrowanie i deszyfrowanie plikdw,

e benchmarki.

Cata aplikacja zostata napisana w jezyku programownia Python. Do GUI zostata wykorzystana
biblioteka customtkinter [Dokumentacijal, a do implementacji algorytmoéw postkwantowych
uzylismy biblioteki libogs.

PQ-Crypto App Dashboard

Start here. Choose what you wan

Welcome to PQ-Crypto App

Dilithium

Picnic

SPHINCS+

Obraz 1. Interfejs graficzny aplikacji (strona powitalna).

Diagram architektury systemu

https://customtkinter.tomschimansky.com/documentation/

|
Uzytkownik
|
interakcja (GUI)

GUI {customtkinter)

Sidebar TopBar
Pages:

- DashboardPage

- KeysPage

- SignPage

- VerifyPage

- EncryptPage

- DecryptPage

- BenchmarkPage

StatusBar

System plikow

- pliki wejsciowe

- * pub {klucz publiczny)
- * key (klucz prywatny)
- pliki zaszyfrowane

- pliki 2 podpisem

wywotania funkcji

Logika aplikacji

proto_generate_keypair()
proto_encrypt()
proto_decrypt()
proto_sign()
proto_verify()

zapisfodczyt
Warstwa kryptografii
libogs:
- Kyber (KEM)
| APl) - Dilithium / Falcon
kryptograficzne - SPHINCS+

AES-GCM (cryptography)

Diagram architektury systemu pokazuje w jaki sposob dziata nasza aplikacja. Interfejs graficzny
odpowiada za kontakt z uzytkownikiem i obstuge jego dziatan, natomiast cata wtasciwa logika
kryptograficzna zostata wydzielona do osobnego modutu, ktéry korzysta z biblioteki libogs.
Operacje na plikach, takie jak zapis i odczyt kluczy czy danych, realizowane sg przez system

plikéw, ktory stanowi niezalezny element architektury.

Generowanie Kluczy

Diagram sekwencji — generowanie kluczy

i GuUl Funkcja Szyfrujaca libogs (Kyber) System Plikow

Klient
I 1. Wybranie algorytmu

alt (Wybar Kyber}|

2.1. Wybranie diugosci klucza

v

3. Wiprowadzenie PINu

4. Klikniecie "Generu™ 5. Wywotanie funkcji
proto_generate_keypair
z wybranym algorytmem

v

v

>

alt {Algorytm szyfrowania (Kyber))
6. Generowanie pary kluczy (KEM)
>

‘7. klucz_publiczny, klucz_prywatny

(Algorytm podpisu (Dilithium, SPHINC 3+, itp.))

8. Generowanie pary kluczy {Signature

‘9. klucz_publiczny, klucz_prywatny

< 10. Klucz publiczny + prywatny

11. Zapis klucza publicznego (* pub) i klucza prywatnegoe (* key)

12. Plik zapisany

13. Klucze wygenerowane pomysinie

Generowanie kluczy zostato przedstawione na diagramie sekwencyjnym. W celu wygenerowania
pary kluczy uzytkownik musi wybra¢ algorytm kryptograficzny (domyslnie jest to Dilithium). W
przypadku wyboru algorytmu Kyber uzytkownik dodatkowo wybiera dtugos$¢ klucza (domysinie
512). Nastepnie wprowadza on PIN i klika przycisk ,Generuj”. Wywotywana jest funkcja
proto_generate_keypair(), a uzytkownikowi zwracana jest para kluczy: prywatny (.key) oraz

publiczny (.pub).

W obu przypadkach na poczatku kazdego pliku dodawany jest nagtéwek w postaci nazwy
algorytmu, oddzielonej spacjg od wtasciwego klucza, dzieki czemu po wybraniu pliku system
jest w stanie okresli¢, jakiego algorytmu nalezy uzy¢. Przyktad nagtéwka wraz z kluczem
przedstawiono na obrazie 6. Na obrazach 2 i 3 pokazano poprawny przebieg generowania
kluczy od strony interfejsu graficznego, natomiast na obrazach 4 i 5 zaprezentowano sytuacje
wyjatkowe, w ktorych uzytkownik nie wprowadzit tego samego PIN-u jako potwierdzenia lub nie

podat PIN-u w ogole.

PQ-Crypto App

Dashboard

Keys Generate keys

Algorithm
Verify Dilithium
Encrypt

Decrypt

Benchmarks

Help

Authors

eki > Dokumenty

Nazwa Data modyfikacji
Dokumenty

nputer

Verify

Obraz 2. Generowanie pary kluczy

PQ-Crypto App Keys

Generate keys
Algorithm
Verify Dilthium
Encrypt
Decrypt
Benchmarks
Help

Authors

Obraz 3. Komunikat o poprawnosci wygenerowania kluczy

Film z generowania kluczy

https://drive.google.com/file/d/TH33TMOgNVZ6grCXeNL_X3XV4|4D8cpgz/view?resourcekey

https://drive.google.com/file/d/1H33TMOgNVZ6grCXeNL_X3XV4l4D8cpgz/view?resourcekey

Generate keys Generate keys

Algorithm Algorithm

Falcon Falcon

Confirm PIN Confirm PIN

Generate key pair Generate key pair

PINs do not match! PIN fields cannot be empty!

Obraz 4 i 5: Wyjatki: generowanie kluczy

:$ cat falcon.key
Falcon

Ce

DPe#tess_o"

ovoe' 06 |obe
066 oa|e!T(7e0e

Obraz 6. Przyktad klucza prywatnego Falcon

Wgranie kluczy z pamieci USB

Po podtaczeniu przenosnej pamieci USB do systemu uzytkownik ma mozliwos¢ uzycia kluczy
kryptograficznych zapisanych na tym nosniku. Aplikacja automatycznie wykrywa podtgczone
urzgdzenia USB i wyswietla dostepne klucze bez koniecznosci recznego wskazywania ich

lokalizaciji.

Wykrywanie realizowane jest przez mechanizm cyklicznego sprawdzania systemu co 3 sekundy,
ktéry analizuje podtgczone nosniki wymienne oraz wyszukuije na nich pliki z kluczami o
rozszerzeniach *.pub oraz *.key. Po odnalezieniu klucza aplikacja identyfikuje uzyty algorytmi
prezentuje go uzytkownikowi, a w przypadku wykrycia wielu kluczy umozliwia wybor
odpowiedniego pliku za pomocg przyciskow nawigacyjnych. Caty proces wykrycia klucza na

nosniku pokazany jest na obrazach 7-10

Public key:

Obraz 8. Aplikacja wykryta kolejny klucz w pamieci USB.

Podaj Passphrase, aby o«
U

Cancel

Obraz 9. System prosi o podanie hasta do klucza prywatnego (PIN).

Sign a document

Select File

Choose file

Select Private Key file (key)

Choose file

Sign Document

Podpis wygenerowany pomysinie!
Zapisano do: test_sign.txt

Obraz 10. Uzycie klucza z pamieci USB do podpisania pliku.

10

Podpis i weryfikacja dokumentu

Diagram sekwencji — podpisywanie pliku

Podpisywanie pliku

% ; — _Iiboqs —
Uzytkownik funkcja podpisujaca Signature | | System plikéw

1 1. Wybor pliku do podpisania
| 2. Wybér klucza prywatnego
1 3. Wprowadzenie PIN

| 4. Klikniecie ,Podpisz”

¥y

. 5. Odczyt pliku

Yy

| 6. Dane pliku

! 7. Wywotanie funkeji proto_sign z
. argumentami (algorytmem, danymi z pliku i
! kluczem prywatnym)

| 8. Generowanie !
| podpisu cyfrowego _
—_———
| 9. podpis |
| PR
| _ 10. Podpis !

| 11. Zapis pliku z podpisem

1| Plik zawiera:

|| - dane oryginalne

/| - nagtéwek ,,BEGIN Signature”
|| - podpis (baseb4)

'| - nagtowek ,END Signature”

|12, Plik zapisany

|13, Podpis wygenerowany pomysinie |

Uzytkownik funkcja podpisujaca libogs System plikéw
% Signature

AN
LR

W celu podpisania dokumentu uzytkownik wybiera plik, ktéry chce podpisa¢, wskazuje klucz
prywatny, wprowadza PIN, a nastepnie klika przycisk ,Podpisz”. Wywotywana jest funkcja
proto_sign(), po czym generowany podpis cyfrowy dotgczany jest na koricu dokumentu wraz z
nagtéwkiem ,==========Begin <nazwa algorytmu> Signature==========" graz znacznikiem
zakonczenia podpisu ,==========End <nazwa algorytmu> Signature==========", Dzieki
zastosowaniu nagtéwka podczas weryfikacji podpisu wystarczy, aby uzytkownik wskazat plik
oraz odpowiadajgcy mu klucz publiczny — nie ma potrzeby recznego podawania nazwy
algorytmu. Podpisany dokument przedstawiono na obrazie 14. Proces podpisywania
dokumentu od strony interfejsu graficznego zaprezentowano na obrazach 11 i 12, natomiast
weryfikacje podpisu pokazano na obrazie 13.

11

PQ-Crypto App Sign

ard

Sign a document

Sign Select File
Verify
Encrypt

e Key file (key)
Decrypt

ose file
Benchmar Key file: tajny_klu
sing Dilithium algorith
Help

Sign Document
Autho

Obraz 11. Podpisywanie dokumentu

Post-Quantum Crypto App

PQ-Crypto App
Dashboard

T Sign a document
Sign Select File

Verify Choose file

Encrypt

Select Private Key file (key)
Decrypt

choose fe
Benchmari Key file: tajny_klucz.
gDt ag
el

sign Document

Obraz 12. Komunikat z poprawnym podpisaniem dokumentu.

12

PQ-Crypto App Veri

Dashboard

oy Verify Signature
Sign Choose document
Verify

Encrypt

Decrypt

erify.
Benchmarks

Podpis jest poprawny!

Obraz 13. Weryfikacja podpisu.

open v | m helln_wur.l.l_:l_sign.txt Save = _ o x
1 Hello, World!
2
3
4 ==========Begin Falcon Signature==========

5 OrivPKSHE®vVDQITu23IAgXofZZH4RJmRBKNT jUwuBofcmPcInCK2tpfFmWEYg+uwRhblkbnQ6zgxWeNnmzKxM5TiTt8exI4B1
Yyn6cQ1i8R8KpySwzt5UK2LMRb6ZSDS5KVEwWiGXXptFfeiulQIlr/
XUEHdI1xueUBKE9t38ZHO2dZcBwdnoSKnBS8yY j55HItLOEMbzPFOraloS6XF9zWsd+I+WQSzIbKpRBomzSPiwb4Txq1KxR187
5VNNXBm9Rjy3IKPZL2CWyOt4801ND/7tU7wy+PYLAMQiW1ZjILHCNpPOGtp5U4LNX5Q5vo1sVL8 /[
VFXREALMZWLPpbMYN12696 jc LEYH3 jOyDDpQoHXKVUSWS 2DWs i6WmNNXI1FpG3LEGpN3ImnId+7m3/
f+zrIzLmxroE9Dsy501856/4szky+eDWHXKuwcdh42grGKVYVNoxRtJI+e9Qbs1WtsvUIWtDLT7VmMOMOCe52BYTRHAVSeS33GB
ME/Fn16p9ymR528qpDSzIh+LuNj46myYx1m/g3JIdM713h6KI+e0KIIWx093mN66me5uD1j IWKXwI100KkSX /
h+N411HXb17m7cqDVLOSX1/
Kx63BF1VNZpT+qNB3RhFOpUiqzNYhwp1GjHDMWOVtcnGTYLCkAWGA®5]Ie0DUWq261aVi8f17kQo1cpiG8phgbSdFnZRnikks
K/TCDSM6NG5N1wzhra2HT/
EBUSbQ1e99ZnA127ZRGIqUX j46NcEnvszeh+jL732mT13ywCuf+k1PaT3KGbabKxIhjI3vimukiot3FvKqGoYvoVIEmB jBLKD
uycqs@zBSKZj28Zi4XCnp/
9CaxftsvVqfE7duvF9etDX015z5shFCM7LZM7LeJCYXBOPEKm4NKMX+Znd5HiGZSTg2g+2PQ1TmemyHKOONY fPVWMWa9ZGDlu6
XkOxtUFNzInIrcTXvz5M8vUSIKLLp2 IXKKQpFTS03KZ01/L1uweCLPThod /W7mdFQZZKZRLX /
JGwidumhhApeT3MLrdriwyThgkJIstt0gzXN1b4k4GKKFHP jmioNY8RaNa02FsSkqoiaUN+U3rzWsq3Rke31h1PF1LYm32cVge
w39/
a9F153yZ76n4nIzBSLPb2vfpilIwxzIvuYIzKOcT+seHjufU9U1UBfnsm2acis8s9yulazzDyvuznfapwyAMtho1bbBBLXBUAZ
61Cm/S8hCkIMS734X7FrDsHyW,/ LkPYbWICL641EpNQ48=

6 ==========End Falcon Signature==========

Obraz 13. Podpisany dokument za pomocg algorytmu Falcon.

Film z podpisu dokumentu

https://drive.google.com/file/d/11h9L5X2MI_JiH47w9mzf4B6AXiSPgW4k/view?resourcekey

13

https://drive.google.com/file/d/1lh9L5X2Ml_JiH47w9mzf4B6AXiSPgW4k/view?resourcekey

Szyfrowanie i odszyfrowanie

Diagram sekwencji — szyfrowanie (Kyber + AES-GCM)

i GUl Funkcja Szyfrujaca libogs (Kyber) (AES)(Systam Plikéw)

Kiient

1. Wybranie pliku

>

2. Wybranie klucza publicznego o

>

3. Kliknigcie "zaszyfruf”

4.Odczytanie danych z pliku

5. Przekazanie danych z pliku

6. Wywotanie funkciji proto_encrypt z
argumentami (funkcja szyfrujaca,
dane z pliku i klucz publiczny)

T.E ja sekrefu (encap_secret
>

8. Wspdiny sekret i szyfregramu KEM
-

Wspalny sekret stuzy do
wygenerowania klucza AES

8. Szyfrowanie danych

v

10. Zaszyfrowane dane

11. Utworzenie pliku JSON:
{ algorytm,

szyfrogram KEM,
AES nonce,

12 Zaszyfrowany pakiet zaszyfrowane dane

13. Zapis zaszyfrowanego pliku

14. Plik zapisany

15. Plik zaszyfrowany pomysinie

W celu zaszyfrowania pliku uzytkownik wybiera plik do zabezpieczenia oraz klucz publiczny
odbiorcy, a nastepnie klika przycisk ,Encrypt”. Plik szyfrowany jest w sposob hybrydowy —
algorytm postkwantowy Kyber wykorzystywany jest do bezpiecznego uzgodnienia wspélnego
sekretu, natomiast wtasciwe dane pliku szyfrowane sg symetrycznie przy uzyciu algorytmu AES.
Wynikiem operacji jest zaszyfrowany pakiet danych (json) zapisany w pliku, zawierajgcy
informacje o uzytym algorytmie oraz wszystkie elementy niezbedne do pdzniejszego
odszyfrowania. Proces szyfrowania pliku od strony interfejsu graficznego przedstawiono na
obrazie 14.

W celu odszyfrowania pliku uzytkownik wybiera wczesniej zaszyfrowany plik oraz
odpowiadajgcy mu klucz prywatny, ktéry odblokowywany jest za pomoca PIN-u. Aplikacja
weryfikuje zgodnos¢ algorytmu zapisanego w pliku z algorytmem klucza, a nastepnie
przeprowadza proces deszyfrowania, ponownie wykorzystujgc algorytm Kyber oraz AES. Po
poprawnym odszyfrowaniu uzytkownik otrzymuje oryginalng tresc¢ pliku, ktérg moze zapisa¢ w
wybranej lokalizacji. Proces deszyfrowania przedstawiono na obrazie 15.

14

PQ-Crypto App Encrypt

Encrypt File

Obraz 14. Szyfrowanie dokumentu

PQ-Crypto App Decrypt
d
Decrypt File
Select encrypted file
Verfy
Encrypt

Decrypt

Obraz 15. Odszyfrowanie dokumentu.

Film z szyfrowania dokumentu

https://drive.google.com/file/d/17poelvJPU9q_fhadETrHixc7gCIF988I/view?resourcekey

15

Benchmark

Modut benchmarku umozliwia poréwnanie wydajnosci wybranych algorytmoéow
kryptograficznych obstugiwanych przez aplikacje. Uzytkownik wybiera algorytm oraz liczbe
iteracji, po czym aplikacja automatycznie mierzy czas wykonania kluczowych operacji, takich jak
generowanie kluczy, podpisywanie i weryfikacja lub szyfrowanie i deszyfrowanie danych. Wyniki
prezentowane sg w formie statystyk, ktére zawierajg w sobie catkowity czas wykonania, sredni
czas pojedynczej operacji oraz przepustowos¢. Pozwala to w prosty sposob oceni¢ wydajnosc i

poréwnac zachowanie algorytméw postkwantowych.

Benchmarks

Algorithm Benchmark

nto Benchmark

Dilithium

Obraz 16. Analiza wydajnosci algorytmu Cross za pomocg funkcji Benchmark.

16

Instalacja

Aby zainstalowac nasz program, wymagane jest srodowisko conda oraz python 3. Potrzebny
jest rowniez wrapper do biblioteki libogs, czyli libogs-python. Biblioteka ta nie jest jednak
obecna w repozytorium pip ani conda, dlatego trzeba jg zainstalowac i skompilowac¢ recznie.
Mozna to zrobi¢ na kilka réznych sposobdw.

Sposdb 1 - Instalacja poprzez libogs-python

Mimo, ze instrukcja méwi, ze przed instalacjg wrappera nalezy zainstalowac najpierw biblioteke
libogs. Natomiast nie jest wcale ona potrzebna do instalacji, poniewaz sam wrapper wykrywa
czy libogs jest zainstalowany w systemie. Jezeli nie jest to sam go instaluje. Jest to
bezpieczniejsza opcja, poniewaz instaluje ona minimalng wersje libogs, potrzebng do
pythonowego wrappera, a uzytkownik nie musi wiedziec¢ jakie flagi przy kompilacji poda¢ do
kompilatora.

Sposdb 2 - Reczna instalacja libogs

Przy kompilacji libogs dostepnych jest wiele flag, ktére zmienig w pewnym stopniu dziatanie
biblioteki, po jej skompilowaniu. Jezeli wiec potrzebujemy mie¢ kontrole nad tymi flagami, to ten
sposob jest wskazany ponad sposobem 1.

Domysilnie libogs jest kompilowany jako biblioteka statyczna (libogs.a), wiec aby byta ona
bibliotekg wspétdzielong, nalezy uzy¢ opcji -BUILD_SHARED_LIBS=0ON.

Niektdre kategorie kryptografii, nie sg domysinie wtgczone (LMS, XMSS). Sg one jednak
uzywane w naszym programie, dlatego aby byty aktywne, nalezy podac¢ flagi
-DOQS_ENABLE_SIG_STFL_LMS=0N, -DOQS_ENABLE_SIG_STFL_XMSS=ON.

Generowanie kluczy dla powyzszych kategorii, rowniez nie jest aktywne po kompilacji, dlatego
nalezy dodac flage -OQS_HAZARDOUS_EXPERIMENTAL_ENABLE_SIG_STFL_KEY_SIG_GEN=ON.

Istniejg rowniez flagi, ktére pozwalajg libogs wykorzystywac wieksze zestawy instrukcji
procesora takie jak AESNI, SSE, AVX512, SHA itd. Nie sg one jednak wymagane, moga one
jedynie pozytywnie wptyna¢ na wydajnos¢ kryptografii. Aby je aktywowacé nalezy skonsultowac
sie z dokumentacjg flag kompilacji. Przed dodaniem flag nalezy mie¢ na uwadze, ze te zestawy
instrukcji moga nie by¢ wspierane przez procesor, przez co biblioteka nie bedzie dziatata.

17

https://github.com/open-quantum-safe/liboqs-python
https://github.com/open-quantum-safe/liboqs/blob/main/CONFIGURE.md#options-for-configuring-liboqs-builds

Sposéb 3 - Nieoficjalne repozytoria

Istniejg nieoficjalne repozytoria dla réznych systeméw utrzymywanych przez uzytkownikéw. Na
systemie Arch Linux istnieje paczka libogs. Instalacja z repozytorium skompiluje biblioteke za
nas. Ma ona ustawionych wiele flag, w tym te podane w sposobie 2.

Nalezy jednak zachowaé ostroznosé, poniewaz te repozytoria sg zarzagdzane przez
uzytkownikdw i nie sg oficjalne, przez co instalowany przez nas libogs moze okaza¢ sie

wirusem.

Instalacja libogs-python

Po zainstalowaniu libogs (lub nie, patrz sposéb 1), nalezy zainstalowac¢ pythonowy wrapper do
biblioteki. Aby to zrobié potrzebne jest utworzenie wirtualnego srodowiska:

Linux i Mac

$ python3 -m venv venv
$. venv/bin/activate
$ python3 -m ensurepip --upgrade

Windows

$ python3 -m venv venv
$ venv\Scripts\activate.bat
$ python3 -m ensurepip --upgrade

Nastepnie nalezy zainstalowac wrapper:

S git clone --depth=1 https://github.com/open-quantum-safe/libogs-python
S cd libogs-python

S pip install .
Na koniec mozna réwniez uruchomic¢ testy (opcjonalne):

S python3 libogs-python/examples/kem.py

$ python3 libogs-python/examples/sig.py

$ python3 libogs-python/examples/stfl_sig.py
$ python3 libogs-python/examples/rand.py

S nose2 -verbose

18

https://github.com/open-quantum-safe/liboqs-python

Uzywanie biblioteki

Wrapper nie jest zainstalowany w catym systemie, w kontekscie uzytkownika, ani w jezyku
python. Zeby nasza aplikacja dziatata, nalezy doda¢ folder, w ktérym znajduje sie wrapper do
Sciezki Pythona:

Linux i Mac

S export PYTHONPATH=SPYTHONPATH:/path/to/libogs-python

Windows

S set PYTHONPATH=%PYTHONPATH%;C:\path\to\libogs-python

19

Wybrane algorytmy

Kyber

Kyber jest w aplikacji jedynym algorytmem wykorzystanym do generowania kluczy
kryptograficznych uzywanych do szyfrowania plikow. Uzytkownik ma do wyboru rézne zestawy
parametréw algorytmu Kyber: Kyber512, Kyber768, Kyber1024 odpowiadajgca kolejnym
poziomom bezpieczenstwa. Do wtasciwego szyfrowania uzywany jest symetryczny algorytm
AES.

Podstawg algorytmu Kyber sg modutowe kraty (Module-LWE/LWR) oraz problem Learning With
Errors, ktory stanowi trudny problem obliczeniowy w przestrzeniach wielowymiarowych krat.

Algorytm jest zatwierdzony przez NIST i standaryzowany jako ML-KEM [Kyber].

Dilithium

Dilithium jest w aplikacji uzywany (tak jak i nastepne cztery algorytmy) do generowania kluczy i
podpisow cyfrowych. Uzywamy jego wersji ML-DSA-44.

Podstawa algorytmu Dilithium sg modutowe kraty (module lattices) oraz problemy
kryptograficzne Module-LWE (Learning With Errors) oraz Module-SIS (Short Integer Solution).
Konstrukcja opiera sie na algebrze wielomianéw nad pierscieniami ilorazowymi oraz na
zastosowaniu Number Theoretic Transform (NTT) w celu przyspieszenia obliczen.
Bezpieczenstwo algorytmu wynika z trudnosci znalezienia krotkich wektorow w

wysokowymiarowych kratach w obecnosci losowego szumu.

Algorytm Dilithium zostat zatwierdzony przez NIST i standaryzowany jako ML-DSA (FIPS 204).
Jest on rekomendowany przez NIST jako gtéwny post-kwantowy algorytm podpisu cyfrowego

[Dilithium].

Falcon

W aplikacji uzywana jest wersja Falcon-1024. W poréwnaniu do Dilithium, Falcon generuje
znacznie krotsze podpisy, kosztem bardziej ztozonej i wrazliwej implementacji.

Podstawg matematyczng algorytmu Falcon sg kraty typu NTRU, czyli kraty pierscieniowe oparte
na arytmetyce wielomianoéw. Bezpieczenstwo algorytmu opiera sie na problemie znajdowania
krétkich wektoréw w kratach NTRU, co jest problemem trudnym zaréwno dla klasycznych, jak i

20

https://quready.com/resources/nist-pqc-standards-guide
https://quready.com/resources/nist-pqc-standards-guide

kwantowych komputeréw. Falcon wykorzystuje réwniez szybkg transformate Fouriera (FFT) do
realizacji precyzyjnego probkowania z rozktadu Gaussa w przestrzeni kratowe;.

Algorytm Falcon zostat wybrany przez NIST jako alternatywny algorytm podpisu
post-kwantowego i jest standaryzowany jako FN-DSA [Falcon].

Cross

W aplikacji uzywana jest wersja cross-rsdp-256-balanced. Nie jest on obecnie wykorzystywany
jako standardowy mechanizm kryptograficzny, lecz stuzy do badan oraz testow przysztych

schematow podpiséw post-kwantowych.

Algorytm Cross nalezy do rodziny schematéw opartych na problemach algebraicznych i
strukturach kratowych.

Algorytm nie zostat zatwierdzony przez NIST i nie posiada statusu standardu.

SPHINCS++

W aplikacji uzywana jest wersja SPHINCS+-SHAKE-128s-simple. Jest on algorytmem podpisu
cyfrowego, ktéry w przeciwienstwie do Dilithium i Falcon nie opiera sie na kratach, lecz
wytgcznie na bezpieczenstwie funkcji skrotu (hash functions) [Sphincs++].

Podstawg matematyczng algorytmu SPHINCS+ sg drzewa Merkle'a, jednokrotne podpisy typu
Winternitz (WOTS+) oraz konstrukcje haszujgce odporne na kolizje i preimage attacks. Schemat
jest stateless, co oznacza, ze nie wymaga przechowywania stanu pomiedzy kolejnymi
podpisami, co znaczgco upraszcza jego uzycie w praktyce.

Algorytm SPHINCS+ zostat zatwierdzony przez NIST i standaryzowany jako SLH-DSA (FIPS
205). W poréwnaniu z wczesniej omawianymi algorytmami, SPHINCS+ charakteryzuje sie
znacznie nizszg wydajnoscig obliczeniowga. Przeprowadzone testy wykazaty, ze wykonanie 50
iteracji zajmowato okoto 60 sekund, podczas gdy w przypadku pozostatych algorytméw czas

ten wynosit okoto 1-2 sekund.

21

https://www.cwi.nl/en/news/nist-standardizes-quantum-safe-cryptography-methods/
https://openquantumsafe.org/liboqs/algorithms/sig/sphincs

	Aplikacja do podpisywania plików, weryfikacji podpisów, a także generowania kluczy. Wykorzystująca algorytmy: Kyber, Dilithium, Falcon, Cross, SPHINCS++.
	Skład grupy

	
	Harmonogram
	Podział prac

	
	Cel projektu
	
	Funkcjonalność aplikacji
	
	Generowanie Kluczy
	
	Wgranie kluczy z pamięci USB
	
	Podpis i weryfikacja dokumentu
	Szyfrowanie i odszyfrowanie
	Benchmark

	
	Instalacja
	Sposób 1 - Instalacja poprzez liboqs-python
	Sposób 2 - Ręczna instalacja liboqs
	Sposób 3 - Nieoficjalne repozytoria
	Instalacja liboqs-python
	Linux i Mac
	Windows

	Używanie biblioteki
	Linux i Mac
	Windows

	
	Wybrane algorytmy
	Kyber
	Dilithium
	Falcon
	Cross
	SPHINCS++

