

Aplikacja do podpisywania plików, weryfikacji
podpisów, a także generowania kluczy.
Wykorzystująca algorytmy: Kyber, Dilithium,
Falcon, Cross, SPHINCS++.
styczeń 2026

Skład grupy

Harmonogram

1.​ Integracja wszystkich algorytmów z aplikacją - do 28.11
2.​ Dodanie funkcji zapisu klucza prywatnego na urządzeniu YubiKey - do 5.12
3.​ Przeprowadzenie testów funkcjonalnych i użytkowych - do 8.01
4.​ Opracowanie pełnej dokumentacji technicznej oraz przygotowanie końcowej prezentacji

projektu - do 26.01

Podział prac
●​ Krzysztof Madajczak - Implementacja Gui, głównej struktury programu, wykrywanie oraz

obsługa dysku zewnętrznego (pendrive)

●​ Julia Sadecka - Implementacja algorytmu szyfrującego Kyber, przygotowanie raportu

diagramów UML, oraz prezentacji.

●​ Jakub Młocek - Implementacja algorytmu Falcon i Cross i przygotowanie benchmarków

algorytmów szyfrujących i podpisu cyfrowego.

●​ Marcel Trzaskawka - Implementacja algorytmów podpisu cyfrowego; Obsługa headerów

plików z celu automatycznego wykrycia algorytmów; Opis instalacji

1

Skład grupy​ 1
Harmonogram​ 1
Podział prac​ 1

Cel projektu​ 3
Funkcjonalność aplikacji​ 4

Generowanie Kluczy​ 6
Wgranie kluczy z pamięci USB​ 9
Podpis i weryfikacja dokumentu​ 11
Szyfrowanie i odszyfrowanie​ 14
Benchmark​ 16

Instalacja​ 17
Sposób 1 - Instalacja poprzez liboqs-python​ 17
Sposób 2 - Ręczna instalacja liboqs​ 17
Sposób 3 - Nieoficjalne repozytoria​ 18
Instalacja liboqs-python​ 18

Linux i Mac​ 18
Windows​ 18

Używanie biblioteki​ 19
Linux i Mac​ 19
Windows​ 19

Wybrane algorytmy​ 20
Kyber​ 20
Dilithium​ 20
Falcon​ 20
Cross​ 21
SPHINCS++​ 21

2

Cel projektu
Celem projektu było stworzenie aplikacji umożliwiającej wygodne i bezpieczne korzystanie z

algorytmów postkwantowych w codziennych operacjach kryptograficznych. Aplikacja pozwala

na generowanie kluczy, podpisywanie i weryfikację dokumentów oraz szyfrowanie i

deszyfrowanie plików, zapewniając jednocześnie intuicyjny interfejs użytkownika w którym

możliwe jest także automatyczne wykrycie kluczy na nośnikach przenośnych. Dodatkowo,

wbudowany moduł benchmarku umożliwia ocenę wydajności poszczególnych algorytmów, co

pozwala porównać ich efektywność w praktyce.

Szczegóły techniczne dotyczące instalacji wymaganych bibliotek zostały opisane w rozdziale

„Instalacja”, a użyte algorytmy postkwantowe w rozdziale „Wybrane algorytmy”. Logika działania

oraz pełna funkcjonalność aplikacji została przedstawiona w rozdziale „Funkcjonalność

aplikacji”.

3

Funkcjonalność aplikacji
Nasza aplikacja ma kilka głównych funkcjonalności:

●​ generowanie kluczy przy użyciu algorytmów postkwantowych,

●​ odczyt kluczy z pamięci przenośnej (pendrive),

●​ podpis i weryfikacja plików,

●​ szyfrowanie i deszyfrowanie plików,

●​ benchmarki.

Cała aplikacja została napisana w języku programownia Python. Do GUI została wykorzystana

biblioteka customtkinter [Dokumentacja], a do implementacji algorytmów postkwantowych

użyliśmy biblioteki liboqs.

Obraz 1. Interfejs graficzny aplikacji (strona powitalna).

Diagram architektury systemu

4

https://customtkinter.tomschimansky.com/documentation/

Diagram architektury systemu pokazuje w jaki sposób działa nasza aplikacja. Interfejs graficzny

odpowiada za kontakt z użytkownikiem i obsługę jego działań, natomiast cała właściwa logika

kryptograficzna została wydzielona do osobnego modułu, który korzysta z biblioteki liboqs.

Operacje na plikach, takie jak zapis i odczyt kluczy czy danych, realizowane są przez system

plików, który stanowi niezależny element architektury.

5

Generowanie Kluczy
Diagram sekwencji – generowanie kluczy

Generowanie kluczy zostało przedstawione na diagramie sekwencyjnym. W celu wygenerowania

pary kluczy użytkownik musi wybrać algorytm kryptograficzny (domyślnie jest to Dilithium). W

przypadku wyboru algorytmu Kyber użytkownik dodatkowo wybiera długość klucza (domyślnie

512). Następnie wprowadza on PIN i klika przycisk „Generuj”. Wywoływana jest funkcja

proto_generate_keypair(), a użytkownikowi zwracana jest para kluczy: prywatny (.key) oraz

publiczny (.pub).

W obu przypadkach na początku każdego pliku dodawany jest nagłówek w postaci nazwy

algorytmu, oddzielonej spacją od właściwego klucza, dzięki czemu po wybraniu pliku system

jest w stanie określić, jakiego algorytmu należy użyć. Przykład nagłówka wraz z kluczem

przedstawiono na obrazie 6. Na obrazach 2 i 3 pokazano poprawny przebieg generowania

kluczy od strony interfejsu graficznego, natomiast na obrazach 4 i 5 zaprezentowano sytuacje

wyjątkowe, w których użytkownik nie wprowadził tego samego PIN-u jako potwierdzenia lub nie

podał PIN-u w ogóle.

6

Obraz 2. Generowanie pary kluczy

Obraz 3. Komunikat o poprawności wygenerowania kluczy

Film z generowania kluczy

https://drive.google.com/file/d/1H33TMOgNVZ6grCXeNL_X3XV4l4D8cpgz/view?resourcekey

7

https://drive.google.com/file/d/1H33TMOgNVZ6grCXeNL_X3XV4l4D8cpgz/view?resourcekey

Obraz 4 i 5: Wyjątki: generowanie kluczy

Obraz 6. Przykład klucza prywatnego Falcon

8

Wgranie kluczy z pamięci USB
Po podłączeniu przenośnej pamięci USB do systemu użytkownik ma możliwość użycia kluczy

kryptograficznych zapisanych na tym nośniku. Aplikacja automatycznie wykrywa podłączone

urządzenia USB i wyświetla dostępne klucze bez konieczności ręcznego wskazywania ich

lokalizacji.

Wykrywanie realizowane jest przez mechanizm cyklicznego sprawdzania systemu co 3 sekundy,

który analizuje podłączone nośniki wymienne oraz wyszukuje na nich pliki z kluczami o

rozszerzeniach *.pub oraz *.key. Po odnalezieniu klucza aplikacja identyfikuje użyty algorytm i

prezentuje go użytkownikowi, a w przypadku wykrycia wielu kluczy umożliwia wybór

odpowiedniego pliku za pomocą przycisków nawigacyjnych. Cały proces wykrycia klucza na

nośniku pokazany jest na obrazach 7-10

Obraz 7. Aplikacja wykryła klucz w podłączonej pamięci USB.

Obraz 8. Aplikacja wykryła kolejny klucz w pamięci USB.

Obraz 9. System prosi o podanie hasła do klucza prywatnego (PIN).

9

Obraz 10. Użycie klucza z pamięci USB do podpisania pliku.

10

Podpis i weryfikacja dokumentu
Diagram sekwencji – podpisywanie pliku

W celu podpisania dokumentu użytkownik wybiera plik, który chce podpisać, wskazuje klucz

prywatny, wprowadza PIN, a następnie klika przycisk „Podpisz”. Wywoływana jest funkcja

proto_sign(), po czym generowany podpis cyfrowy dołączany jest na końcu dokumentu wraz z

nagłówkiem „==========Begin <nazwa algorytmu> Signature==========” oraz znacznikiem

zakończenia podpisu „==========End <nazwa algorytmu> Signature==========”. Dzięki

zastosowaniu nagłówka podczas weryfikacji podpisu wystarczy, aby użytkownik wskazał plik

oraz odpowiadający mu klucz publiczny — nie ma potrzeby ręcznego podawania nazwy

algorytmu. Podpisany dokument przedstawiono na obrazie 14. Proces podpisywania

dokumentu od strony interfejsu graficznego zaprezentowano na obrazach 11 i 12, natomiast

weryfikację podpisu pokazano na obrazie 13.

11

Obraz 11. Podpisywanie dokumentu

Obraz 12. Komunikat z poprawnym podpisaniem dokumentu.

12

Obraz 13. Weryfikacja podpisu.

Obraz 13. Podpisany dokument za pomocą algorytmu Falcon.

Film z podpisu dokumentu

https://drive.google.com/file/d/1lh9L5X2Ml_JiH47w9mzf4B6AXiSPgW4k/view?resourcekey

13

https://drive.google.com/file/d/1lh9L5X2Ml_JiH47w9mzf4B6AXiSPgW4k/view?resourcekey

Szyfrowanie i odszyfrowanie
Diagram sekwencji – szyfrowanie (Kyber + AES-GCM)

W celu zaszyfrowania pliku użytkownik wybiera plik do zabezpieczenia oraz klucz publiczny

odbiorcy, a następnie klika przycisk „Encrypt”. Plik szyfrowany jest w sposób hybrydowy —

algorytm postkwantowy Kyber wykorzystywany jest do bezpiecznego uzgodnienia wspólnego

sekretu, natomiast właściwe dane pliku szyfrowane są symetrycznie przy użyciu algorytmu AES.

Wynikiem operacji jest zaszyfrowany pakiet danych (json) zapisany w pliku, zawierający

informacje o użytym algorytmie oraz wszystkie elementy niezbędne do późniejszego

odszyfrowania. Proces szyfrowania pliku od strony interfejsu graficznego przedstawiono na

obrazie 14.

W celu odszyfrowania pliku użytkownik wybiera wcześniej zaszyfrowany plik oraz

odpowiadający mu klucz prywatny, który odblokowywany jest za pomocą PIN-u. Aplikacja

weryfikuje zgodność algorytmu zapisanego w pliku z algorytmem klucza, a następnie

przeprowadza proces deszyfrowania, ponownie wykorzystując algorytm Kyber oraz AES. Po

poprawnym odszyfrowaniu użytkownik otrzymuje oryginalną treść pliku, którą może zapisać w

wybranej lokalizacji. Proces deszyfrowania przedstawiono na obrazie 15.

14

Obraz 14. Szyfrowanie dokumentu

Obraz 15. Odszyfrowanie dokumentu.

Film z szyfrowania dokumentu

https://drive.google.com/file/d/17poelvJPU9q_fhadETrHixc7gCIF988I/view?resourcekey

15

Benchmark
Moduł benchmarku umożliwia porównanie wydajności wybranych algorytmów

kryptograficznych obsługiwanych przez aplikację. Użytkownik wybiera algorytm oraz liczbę

iteracji, po czym aplikacja automatycznie mierzy czas wykonania kluczowych operacji, takich jak

generowanie kluczy, podpisywanie i weryfikacja lub szyfrowanie i deszyfrowanie danych. Wyniki

prezentowane są w formie statystyk, które zawierają w sobie całkowity czas wykonania, średni

czas pojedynczej operacji oraz przepustowość. Pozwala to w prosty sposób ocenić wydajność i

porównać zachowanie algorytmów postkwantowych.

Obraz 16. Analiza wydajności algorytmu Cross za pomocą funkcji Benchmark.

16

Instalacja
Aby zainstalować nasz program, wymagane jest środowisko conda oraz python 3. Potrzebny

jest również wrapper do biblioteki liboqs, czyli liboqs-python. Biblioteka ta nie jest jednak

obecna w repozytorium pip ani conda, dlatego trzeba ją zainstalować i skompilować ręcznie.

Można to zrobić na kilka różnych sposobów.

Sposób 1 - Instalacja poprzez liboqs-python
Mimo, że instrukcja mówi, że przed instalacją wrappera należy zainstalować najpierw bibliotekę

liboqs. Natomiast nie jest wcale ona potrzebna do instalacji, ponieważ sam wrapper wykrywa

czy liboqs jest zainstalowany w systemie. Jeżeli nie jest to sam go instaluje. Jest to

bezpieczniejsza opcja, ponieważ instaluje ona minimalną wersję liboqs, potrzebną do

pythonowego wrappera, a użytkownik nie musi wiedzieć jakie flagi przy kompilacji podać do

kompilatora.

Sposób 2 - Ręczna instalacja liboqs
Przy kompilacji liboqs dostępnych jest wiele flag, które zmienią w pewnym stopniu działanie

biblioteki, po jej skompilowaniu. Jeżeli więc potrzebujemy mieć kontrolę nad tymi flagami, to ten

sposób jest wskazany ponad sposobem 1.

Domyślnie liboqs jest kompilowany jako biblioteka statyczna (liboqs.a), więc aby była ona

biblioteką współdzieloną, należy użyć opcji -BUILD_SHARED_LIBS=ON.

Niektóre kategorie kryptografii, nie są domyślnie włączone (LMS, XMSS). Są one jednak

używane w naszym programie, dlatego aby były aktywne, należy podać flagi

-DOQS_ENABLE_SIG_STFL_LMS=ON, -DOQS_ENABLE_SIG_STFL_XMSS=ON.

Generowanie kluczy dla powyższych kategorii, również nie jest aktywne po kompilacji, dlatego

należy dodać flagę -OQS_HAZARDOUS_EXPERIMENTAL_ENABLE_SIG_STFL_KEY_SIG_GEN=ON.

Istnieją również flagi, które pozwalają liboqs wykorzystywać większe zestawy instrukcji

procesora takie jak AESNI, SSE, AVX512, SHA itd. Nie są one jednak wymagane, mogą one

jedynie pozytywnie wpłynąć na wydajność kryptografii. Aby je aktywować należy skonsultować

się z dokumentacją flag kompilacji. Przed dodaniem flag należy mieć na uwadze, że te zestawy

instrukcji mogą nie być wspierane przez procesor, przez co biblioteka nie będzie działała.

17

https://github.com/open-quantum-safe/liboqs-python
https://github.com/open-quantum-safe/liboqs/blob/main/CONFIGURE.md#options-for-configuring-liboqs-builds

Sposób 3 - Nieoficjalne repozytoria
Istnieją nieoficjalne repozytoria dla różnych systemów utrzymywanych przez użytkowników. Na

systemie Arch Linux istnieje paczka liboqs. Instalacja z repozytorium skompiluje bibliotekę za

nas. Ma ona ustawionych wiele flag, w tym te podane w sposobie 2.

Należy jednak zachować ostrożność, ponieważ te repozytoria są zarządzane przez

użytkowników i nie są oficjalne, przez co instalowany przez nas liboqs może okazać się

wirusem.

Instalacja liboqs-python
Po zainstalowaniu liboqs (lub nie, patrz sposób 1), należy zainstalować pythonowy wrapper do

biblioteki. Aby to zrobić potrzebne jest utworzenie wirtualnego środowiska:

Linux i Mac

$ python3 -m venv venv​

$. venv/bin/activate​

$ python3 -m ensurepip --upgrade

Windows

$ python3 -m venv venv​

$ venv\Scripts\activate.bat​

$ python3 -m ensurepip --upgrade

Następnie należy zainstalować wrapper:

$ git clone --depth=1 https://github.com/open-quantum-safe/liboqs-python​

$ cd liboqs-python​

$ pip install .

Na koniec można również uruchomić testy (opcjonalne):

$ python3 liboqs-python/examples/kem.py​

$ python3 liboqs-python/examples/sig.py​

$ python3 liboqs-python/examples/stfl_sig.py​

$ python3 liboqs-python/examples/rand.py​

​$ nose2 --verbose

18

https://github.com/open-quantum-safe/liboqs-python

Używanie biblioteki
Wrapper nie jest zainstalowany w całym systemie, w kontekście użytkownika, ani w języku

python. Żeby nasza aplikacja działała, należy dodać folder, w którym znajduje się wrapper do

Ścieżki Pythona:

Linux i Mac

$ export PYTHONPATH=$PYTHONPATH:/path/to/liboqs-python

Windows

$ set PYTHONPATH=%PYTHONPATH%;C:\path\to\liboqs-python

19

Wybrane algorytmy
Kyber

Kyber jest w aplikacji jedynym algorytmem wykorzystanym do generowania kluczy

kryptograficznych używanych do szyfrowania plików. Użytkownik ma do wyboru różne zestawy

parametrów algorytmu Kyber: Kyber512, Kyber768, Kyber1024 odpowiadająca kolejnym

poziomom bezpieczeństwa. Do właściwego szyfrowania używany jest symetryczny algorytm

AES.

Podstawą algorytmu Kyber są modułowe kraty (Module-LWE/LWR) oraz problem Learning With

Errors, który stanowi trudny problem obliczeniowy w przestrzeniach wielowymiarowych krat.

Algorytm jest zatwierdzony przez NIST i standaryzowany jako ML-KEM [Kyber].

Dilithium

Dilithium jest w aplikacji używany (tak jak i następne cztery algorytmy) do generowania kluczy i

podpisów cyfrowych. Używamy jego wersji ML-DSA-44.

Podstawą algorytmu Dilithium są modułowe kraty (module lattices) oraz problemy

kryptograficzne Module-LWE (Learning With Errors) oraz Module-SIS (Short Integer Solution).

Konstrukcja opiera się na algebrze wielomianów nad pierścieniami ilorazowymi oraz na

zastosowaniu Number Theoretic Transform (NTT) w celu przyspieszenia obliczeń.

Bezpieczeństwo algorytmu wynika z trudności znalezienia krótkich wektorów w

wysokowymiarowych kratach w obecności losowego szumu.

Algorytm Dilithium został zatwierdzony przez NIST i standaryzowany jako ML-DSA (FIPS 204).

Jest on rekomendowany przez NIST jako główny post-kwantowy algorytm podpisu cyfrowego

[Dilithium].

Falcon

W aplikacji używana jest wersja Falcon-1024. W porównaniu do Dilithium, Falcon generuje

znacznie krótsze podpisy, kosztem bardziej złożonej i wrażliwej implementacji.

Podstawą matematyczną algorytmu Falcon są kraty typu NTRU, czyli kraty pierścieniowe oparte

na arytmetyce wielomianów. Bezpieczeństwo algorytmu opiera się na problemie znajdowania

krótkich wektorów w kratach NTRU, co jest problemem trudnym zarówno dla klasycznych, jak i

20

https://quready.com/resources/nist-pqc-standards-guide
https://quready.com/resources/nist-pqc-standards-guide

kwantowych komputerów. Falcon wykorzystuje również szybką transformatę Fouriera (FFT) do

realizacji precyzyjnego próbkowania z rozkładu Gaussa w przestrzeni kratowej.

Algorytm Falcon został wybrany przez NIST jako alternatywny algorytm podpisu

post-kwantowego i jest standaryzowany jako FN-DSA [Falcon].

Cross

W aplikacji używana jest wersja cross-rsdp-256-balanced. Nie jest on obecnie wykorzystywany

jako standardowy mechanizm kryptograficzny, lecz służy do badań oraz testów przyszłych

schematów podpisów post-kwantowych.

Algorytm Cross należy do rodziny schematów opartych na problemach algebraicznych i

strukturach kratowych.

Algorytm nie został zatwierdzony przez NIST i nie posiada statusu standardu.

SPHINCS++

W aplikacji używana jest wersja SPHINCS+-SHAKE-128s-simple. Jest on algorytmem podpisu

cyfrowego, który w przeciwieństwie do Dilithium i Falcon nie opiera się na kratach, lecz

wyłącznie na bezpieczeństwie funkcji skrótu (hash functions) [Sphincs++].

Podstawą matematyczną algorytmu SPHINCS+ są drzewa Merkle’a, jednokrotne podpisy typu

Winternitz (WOTS+) oraz konstrukcje haszujące odporne na kolizje i preimage attacks. Schemat

jest stateless, co oznacza, że nie wymaga przechowywania stanu pomiędzy kolejnymi

podpisami, co znacząco upraszcza jego użycie w praktyce.

Algorytm SPHINCS+ został zatwierdzony przez NIST i standaryzowany jako SLH-DSA (FIPS

205). W porównaniu z wcześniej omawianymi algorytmami, SPHINCS+ charakteryzuje się

znacznie niższą wydajnością obliczeniową. Przeprowadzone testy wykazały, że wykonanie 50

iteracji zajmowało około 60 sekund, podczas gdy w przypadku pozostałych algorytmów czas

ten wynosił około 1-2 sekund.

21

https://www.cwi.nl/en/news/nist-standardizes-quantum-safe-cryptography-methods/
https://openquantumsafe.org/liboqs/algorithms/sig/sphincs

	Aplikacja do podpisywania plików, weryfikacji podpisów, a także generowania kluczy. Wykorzystująca algorytmy: Kyber, Dilithium, Falcon, Cross, SPHINCS++.
	Skład grupy

	
	Harmonogram
	Podział prac

	
	Cel projektu
	
	Funkcjonalność aplikacji
	
	Generowanie Kluczy
	
	Wgranie kluczy z pamięci USB
	
	Podpis i weryfikacja dokumentu
	Szyfrowanie i odszyfrowanie
	Benchmark

	
	Instalacja
	Sposób 1 - Instalacja poprzez liboqs-python
	Sposób 2 - Ręczna instalacja liboqs
	Sposób 3 - Nieoficjalne repozytoria
	Instalacja liboqs-python
	Linux i Mac
	Windows

	Używanie biblioteki
	Linux i Mac
	Windows

	
	Wybrane algorytmy
	Kyber
	Dilithium
	Falcon
	Cross
	SPHINCS++

